ATSC Standards

From Wikipedia, the free encyclopedia

Jump to: navigation, search
List of digital video broadcast standards
DVB family (Europe)
DVB-S (satellite)
DVB-T (terrestrial)
DVB-C (cable)
DVB-H (handheld)
ATSC family (North America)
ATSC (terrestrial/cable)
ATSC-M/H (mobile/handheld)
ISDB family (Japan/Brazil)
ISDB-S (satellite)
ISDB-T (terrestrial)
ISDB-C (cable)
SBTVD/ISDB-TB (Brazil)
Chinese Digital Video Broadcasting standard
DMB-T/H (Terrestrial/Handheld)
ADTB-T (Terrestrial)
CMMB (Handheld)
ABS-S (satellite)
DMB Family (Korean)
T-DMB (terrestrial)
S-DMB (satellite)
Codecs
Video
Audio
Frequency bands
VHF
UHF
SHF

The ATSC (Advanced Television Systems Committee) documents a digital television format that will replace the analog NTSC television system[1] on June 12, 2009 in the United States,[2][3] August 31, 2011 in Canada[4] and December 31, 2021 in Mexico. It was developed by the Advanced Television Systems Committee.

The high definition television standards defined by the ATSC produce wide screen 16:9 images up to 1920×1080 pixels in size — more than six times the display resolution of the earlier standard. However, many different image sizes are also supported, so that up to six standard-definition "subchannels" can be broadcast on a single 6 MHz TV channel.

ATSC also boasts "theater quality"[cite this quote] audio because it uses the Dolby Digital AC-3 format to provide 5.1-channel surround sound. Numerous auxiliary datacasting services can also be provided.

Broadcasters who use ATSC and want to retain an analog signal must broadcast on two separate channels, as the ATSC system requires the use of an entire channel. Virtual channels allow channel numbers to be remapped from their physical RF channel to any other number 1 to 99, so that ATSC stations can either be associated with the related NTSC channel numbers, or all stations on a network can use the same number. There is also a standard for distributed transmission systems (DTx), a form of single-frequency network which allows for the synchronised operation of multiple on-channel booster stations.

ATSC standards are marked A/x (x is the standard number) and can be downloaded freely from the ATSC's website at ATSC.org

Many aspects of ATSC are patented, including elements of the MPEG video coding, the AC-3 audio coding, and the 8VSB modulation.[5] The cost of patent licensing, estimated at up to fifty dollars per digital TV receiver,[6] has prompted complaints by manufacturers.[7]

As with other systems, ATSC depends on numerous interwoven standards, e.g. the EIA-708 standard for digital closed captioning, leading to variations in implementation.

Contents

[edit] Resolution

The ATSC system supports a number of different display resolutions, aspect ratios, and frame rates. The formats are listed here by resolution, form of scanning (progressive or interlaced), and number of frames (or fields) per second (see also the TV resolution overview at the end of this article). The table includes formats from both A/53 Part 4 (MPEG-2 Video System Characteristics) and A/63 (Standard for Coding 25/50 Hz Video).

Resolution Aspect ratio Pixel aspect ratio Form of scanning Framerate (Hz)
Vertical Horizontal
288 352 4:3 or 16:9 non-square progressive 25
480 640 4:3 square interlaced 29.97 (59.94 fields/s)
30 (60 fields/s)
progressive 23.976
24
29.97
30
59.94
60
704 4:3 or 16:9 non-square interlaced 29.97 (59.94 fields/s)
30 (60 fields/s)
progressive 23.976
24
29.97
30
59.94
60
576 352 4:3 or 16:9 non-square interlaced 25 (50 fields/s)
progressive 25
480 4:3 or 16:9 non-square interlaced 25 (50 fields/s)
progressive 25
544 4:3 or 16:9 non-square interlaced 25 (50 fields/s)
progressive 25
720 4:3 or 16:9 non-square interlaced 25 (50 fields/s)
progressive 25
50
720 1280 16:9 square progressive 23.976
24
25
29.97
30
50
59.94
60
1080 1920 16:9 square interlaced 25 (50 fields/s)
29.97 (59.94 fields/s)
30 (60 fields/s)
progressive 23.976
24
25
29.97
30

The different resolutions can operate in progressive scan or interlaced mode, although the highest 1080-line system cannot display progressive images at the rate of 59.94 or 60 frames per second. (Such technology was seen as too advanced at the time, plus the image quality was deemed to be too poor considering the amount of data that can be transmitted.) A terrestrial (over-the-air) transmission carries 19.39 megabits of data per second, compared to a maximum possible bitrate of 10.08 Mbit/s allowed in the DVD standard.

"EDTV" displays can reproduce progressive scan content and frequently have a 16:9 wide screen format. Such resolutions are 720×480 in NTSC or 720×576 in PAL, allowing 60 progressive frames per second in NTSC or 50 in PAL.

There are three basic display sizes for ATSC. Basic and enhanced NTSC and PAL image sizes are at the bottom level at 480 or 576 lines. Medium-sized images have 720 scanlines and are 1280 pixels wide. The top tier has 1080 lines 1920 pixels wide. 1080-line video is actually encoded with 1920×1088 pixel frames, but the last eight lines are discarded prior to display. This is due to a restriction of the MPEG-2 video format, which requires the number of coded luma samples (i.e., pixels) to be divisible by 16.

[edit] Codecs

For transport, ATSC uses the MPEG-2 systems specification, known as transport stream, to encapsulate data, subject to certain constraints. ATSC uses 188-byte MPEG transport stream packets to carry data. Before decoding of audio and video takes place, the receiver must demodulate and apply error correction to the signal. Then, the transport stream may be demultiplexed into its constituent streams.

Since July 2008, ATSC supports the H.264/MPEG-4 AVC (Advanced Video Coding). The standard is split in two parts:

  • A/72 part 1: Video System Characteristics of AVC in the ATSC Digital Television System[8]
  • A/72 part 2 : AVC Video Transport Subsystem Characteristics[9]

The earlier specification also supports MPEG-2 video as the video codec, with certain constraints.

Dolby Digital AC-3 is used as the audio codec, though it was officially standardized as A/52 by the ATSC. It allows the transport of up to five channels of sound with a sixth channel for low-frequency effects (the so-called "5.1" configuration). In contrast, Japanese ISDB HDTV broadcasts use MPEG's Advanced Audio Coding (AAC) as the audio codec, which also allows 5.1 audio output. DVB (see below) allows both.

The Grand Alliance issued a statement finding the MP2 system to be "essentially equivalent" to Dolby, but only after the Dolby selection had been made. Later, a story emerged that MIT had entered into an agreement with Dolby whereupon the university would be awarded a large sum if the MP2 system was rejected. Dolby also offered an incentive for Zenith to switch their vote (which they did), however it is unknown whether they accepted the offer. [10]

[edit] Modulation and transmission

ATSC signals are designed to use the same 6 MHz bandwidth as NTSC television channels (the interference requirements of A/53 DTV standards with adjacent NTSC or other DTV channels are very strict). Once the video and audio signals have been compressed and multiplexed, the transport stream can be modulated in different ways depending on the method of transmission.

  • Terrestrial (local) broadcasters use 8VSB modulation that can transfer at a maximum rate of 19.39 Mbit/s, sufficient to carry several video and audio programs and metadata.
  • Cable television stations can generally operate at a higher signal-to-noise ratio and can use 16VSB or 256-QAM to achieve a throughput of 38.78 Mbit/s, using the same 6 MHz channel.

In recent years, cable operators have become accustomed to compressing standard-resolution video for digital cable systems, making it harder to find duplicate 6 MHz channels for local broadcasters on uncompressed "basic" cable.

Currently, the Federal Communications Commission requires cable operators in the United States to carry the analog or digital transmission of a terrestrial broadcaster (but not both), when so requested by the broadcaster (the "must-carry rule"). The Canadian Radio-television and Telecommunications Commission in Canada has similar rules in force with respect to carrying ATSC signals.

However, cable operators in the US (and to a lesser extent Canada) can determine their own method of modulation for their plants.

  • Consequently, most North American cable operators have added 256-QAM to the 16VSB standard originally used.
  • Cable operators have still been slow to add ATSC channels to their lineups for legal, regulatory, and plant & equipment related reasons.
  • 256 QAM is a cable standard, not an ATSC standard; however, over time it is expected to be included in the ATSC standard

There is also a standard for transmitting ATSC via satellite; however, this is only used by TV networks. Very few teleports outside the US support the ATSC satellite transmission standard, but teleport support for the standard is improving. The ATSC satellite transmission system is not used for direct broadcast satellite systems; in North America these have long used either DVB-S (in standard or modified form) or a proprietary system such as DSS or DigiCipher 2.

[edit] Other systems

Digital terrestrial television broadcasting systems. Countries using ATSC are shown in orange.

A majority of the world's nations have chosen to adopt the DVB standard, as can be seen on the status list on the DVB Project website.

ATSC coexists with the DVB-T standard, and with ISDB-T being implemented in Japan. (ISDB modulation also serves as a basis of the SBTVD-T standard in Brazil.) A similar standard called ADTB was developed for use as part of China's new DMB-T/H dual standard. While China has officially chosen a dual standard, there is no requirement that a receiver work with both standards and there is no support for the ADTB modulation from broadcasters or equipment and receiver manufacturers. Taiwan has chosen DVB-T COFDM as its official modulation.

Because of potential use outside of existing NTSC areas, the ATSC system includes the capability to carry PAL and SECAM formatted video (576 displayable lines, 50 fields or 25 frames per second) along with NTSC (486 displayable lines, 60 x 1000/1001 fields or 30 x 1000/1001 frames per second) and film (24 frames per second).

[edit] Comparison

While the ATSC system has been criticized as being complicated and expensive to implement and use, both broadcasting and receiving equipment are now comparable in cost with that of DVB.

The ATSC signal is more susceptible to changes in radio propagation conditions than DVB-T and ISDB-T. It also lacks true hierarchical modulation, which allows the SDTV part of an HDTV signal (or the audio portion of a television program) to be received uninterrupted even in fringe areas where signal strength is low. For this reason, an additional modulation mode, enhanced-VSB (E-VSB) has been introduced, allowing for a similar benefit.

In spite of ATSC's fixed transmission mode, it is still a robust signal under various conditions. 8VSB was chosen over COFDM in part because many areas of North America are rural and have a much lower population density, thereby requiring larger transmitters and resulting in large fringe areas. In these areas, 8VSB was shown to perform better than other systems.

COFDM is used in both DVB-T and ISDB-T, and for 1seg, as well as DVB-H and HD Radio in the United States. In metropolitan areas, where the great and increasing majority of North Americans live, COFDM is said to be better at handling multipath. While ATSC is also incapable of true single-frequency network (SFN) operation, the distributed transmission mode, using multiple synchronised on-channel transmitters, has been shown to improve reception under similar conditions. Thus, it may not require more spectrum allocation than DVB-T using SFNs.

[edit] Mobile TV

Mobile reception of digital stations using ATSC has (until now) been difficult to impossible, especially when moving at vehicular speeds. To overcome this, there are several proposed systems that report improved mobile reception: Samsung/Rohde & Schwarz's A-VSB, Harris/LG's MPH, and a recent proposal from Thomson/Micronas; all of these systems have been submitted as candidates for a new ATSC standard, ATSC-M/H. After one year of standardization, the solution based on LGE technology has been adopted and will now be deployed in 2009. This is in addition to other proprietary standards like MediaFLO, and worldwide open standards such as DVB-H and T-DMB. Like DVB-H and ISDB 1seg, the proposed ATSC mobile standards are backward-compatible with existing tuners, despite being added to the standard well after the original standard was in wide use.

Mobile reception of some stations will still be more difficult, because 18 UHF channels in the U.S. have been removed from TV service, forcing some broadcasters to stay on VHF. This band requires larger antennas for reception, and is more prone to electromagnetic interference from engines and rapidly-changing multipath conditions.[citations needed]

[edit] Countries and territories using ATSC

[edit] Americas

[edit] Asia/Pacific

[edit] Europe

  •  Albania (To be completely transformed never)

[edit] References

  1. ^ Major retailer stops selling analog sets
  2. ^ A New Era in Television Broadcasting - DTVTransition.org
  3. ^ Congress delays DTV switch
  4. ^ The Commission establishes a new approach for Canadian conventional television
  5. ^ TV makers to fight royalties
  6. ^ FCC Opens Inquiry Into Patent Costs For Digital TVs, Dow Jones, February 25, 2009
  7. ^ Amtran affiliate accuses Funai of unfair competition, Lisa Wang, Taipei Times, Feb 24, 2009
  8. ^ http://www.atsc.org/standards/a_72_part_1.pdf
  9. ^ http://www.atsc.org/standards/a_72_part_2.pdf
  10. ^ MIT Getting Millions For Digital TV Deal, Keith J. Winsteln, The Tech (Massachusetts Institute of Technology), November 8, 2002
  11. ^ Argentina did reconsider its choice of 8VSB, but has been sitting on the fence for a number of years. On November 17, 2006, the three standards (DVB, ATSC and ISDB) were presented to Argentinian Government officials, but no decision to change the standard has been made. Brasil has now chosen ISDB-T and this decision may influence other Central and South American countries to follow their lead.[citation needed]

[edit] See also

[edit] External links

Personal tools